@sgol Eyton © CALCULATION POLICY
ADDITION
Arsery Recepion

Nursery \& Reception

Progression Step 1 Numeracy Framework:
"I can understand and use the concept of 'one more' in my play." (augmentation) "I can combine two groups of objects to find 'how many altogether?'" (aggregation) "I can find and use number facts to compose a number (up to 10) in different ways." (number bonds)

Progression Step 1 Maths \& Numeracy AoLE:

"I can use mathematical language to describe quantities, and to make estimates and comparisons such as 'more than', 'less than' and 'equal to'."
"I can communicate how sets change when objects are added to and taken away from them."

CONCRETE RESOURCES:

- Concrete objects - dinosaurs, animals, buttons, balloons, cubes etc.
- Multilink
- Chalk
- Hoops and beanbags
- Numicon

VOCABULARY: add, more, and, make, sum, total, altogether, score, double, one more, two more, ten more..., how many more to make...?, how many more is... than...?

USEFUL VIDEOS: https://www.youtube.com/watch?v=OblXW 1 H 4 I (How to use Numicon)

METHOD/GUIDANCE
Using a range of practical resources and real-life contexts, pupils develop their understanding of the concept of addition through counting activities.

Children will develop an understanding of addition by both aggregation and augmentation.

EXAMPLE/REPRESENTATION
How many dinosaurs are there?

What about if I give you two more? How many are there now?

Aggregation

1. Combining two or more quantities

2. Augmentation of one quantity

Children are introduced to the addition symbol (+) and use images to represent the calculation.	There are 2 birds. Another bird flies in. How many are there altogether? $4^{0}+4^{x}=3$
Children store the larger number mentally and use fingers to count on.	Count on from the larger number. A child will choose the larger number, even when it is not first in the number sentence and count on from there; (5 in your head) 'six, seven, eight' using their fingers:
Children represent an addition number sentence pictorially and are able to solve simple addition number sentences using objects or fingers. Children will begin to explain their reasoning.	
Children will be introduced to number tracks. They can be drawn, using chalk, outside. This will help children develop their understanding of addition.	
MENTAL STRATEGIES: - Develop a mental image of the number system. - Understand the value of a number - Counting forwards and backwards - Recall of number bonds to 10	

Ysgol Eyton
 CALCULATION POLICY
 ADDITION

YEAR 1

Progression Step 1 Numeracy Framework:
"I can understand and use the concept of 'one more' in my play." (augmentation)
"I can combine two groups of objects to find 'how many altogether?'" (aggregation)
"I can find and use number facts to compose a number (up to 10) in different ways." (number bonds)

Progression Step 1 Maths \& Numeracy AoLE:

"I can use mathematical language to describe quantities, and to make estimates and comparisons such as 'more than', 'less than' and 'equal to'." "I can communicate how sets change when objects are added to and taken away from them."

Progression Step 2 Numeracy Framework:
"I can check subtraction using addition." "I can use mental strategies to add and subtract at least 2-digit numbers."
"I can use mental strategies to recall number facts within 20."
"I can use different combinations of money to pay for items up to at least £2 and calculate the change."

Progression Step 2 Maths \& Numeracy AoLE:
"I have explored additive relationships, using a range of representations. I can add and subtract whole numbers, using a variety of written and mental methods."
"I have explored commutativity with addition and multiplication and I can recognise when two different numerical expressions describe the same situation but are written in different ways."
"I can find missing numbers when number bonds (+ -) and multiplication facts ($\mathrm{x} \div$) are not complete."

CONCRETE RESOURCES:

- Bead strings
- Number tracks
- Numicon
- Prepared number lines
- 100 number square
- Dienes - use when not crossing boundary
- Straws and elastic bands - use when crossing boundary
- Concrete objects - dinosaurs, animals, buttons, balloons, cubes etc.

Children will store the larger number mentally and count on using their fingers or objects.	$\overbrace{14+3=}^{14\}_{1}}$
Children will use a prepared number line to solve simple addition stories and number sentences.	$2+5=7$ $8+6=14$ (2)
Children will be taught how to solve simple addition stories with the support of a 100 number square.	$11+7=18$
Children are taught how to use a blank number line for addition and then encouraged to draw their own number line to help solve problems. Children will begin with TU $+U$ that lie within the tens boundary using dienes then move onto $\mathrm{TU}+\mathrm{U}$ that cross the tens boundary using straws.	
Children will partition numbers into tens and units using dienes when adding two 2-digit numbers that lie within the tens boundary.	
Children will solve one-step addition problems (including missing number problems) using concrete, pictorial and abstract representations of numbers. Children will be introduced to the concept of inverse meaning that addition 'undoes' subtraction and vice versa.	I have 5 sweets and I am given 3 more. How many do I have altogether? Sarah has 3 balloons and Tom has 9. How many do they have altogether?
MENTAL STRATEGIES: - Know addition can be carried out in any - Add 1- and 2-digit numbers to 20 includ - Number bonds to 20 - Doubles of numbers up to and includin - Adding 10 to a single digit number - Identify 1 more than a given number - Mentally picture the number line calcu	y order (commutative) ding 0 g double 10 ation method

Children begin to set out TU + TU_(that cross the hundreds boundary) in columns using straws and record as expanded column addition.

Recognise and use inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
*Use fact family triangles and bar modelling to solve missing number problems.

George has 14 strawberries and Jess has 12 strawberries. How many strawberries are there altogether?

$$
\begin{gathered}
14+12=26 \\
\prod_{\square}^{\square} \square+\pi \square \square \square \square \prod_{\square}^{\square} \square \square
\end{gathered}
$$

Children will solve simple addition problems using concrete, pictorial and abstract representations, including those involving number, quantities and measures and explaining reasoning behind their calculations.

MENTAL STRATEGIES:

- Know that addition is the inverse of subtraction
- Add numbers mentally, including:
a 2-digit number and units
a multiple of 10 to a 2 -digit number
two 2-digit numbers
three 1-digit numbers
- Mentally picture the number line calculation method
- Use knowledge of inverse to check calculations and solve missing number problems
- Use knowledge of number bonds to 10 to calculate numbers bonds to 100
- Count on in tens from any given number (e.g 19-29-39-49 etc)

Ysgol Eyton CALCULATION POLICY		
ADDITION		
YEAR 4		
Progression Step 2 Numeracy Framework: "I can check subtraction using addition." "I can use mental strategies to add and subtract at least 2-digit numbers." "I can use mental strategies to recall number facts within 20." "I can use different combinations of money to pay for items up to at least £2 and calculate the change." Progression Step 2 Maths \& Numeracy AoLE: "I have explored additive relationships, using a range of representations. I can add and subtract whole numbers, using a variety of written and mental methods." "I have explored commutativity with addition and multiplication and I can recognise when two different numerical expressions describe the same situation but are written in different ways." "I can find missing numbers when number bonds (+-) and multiplication facts ($\mathrm{x} \div$) are not complete."		Progression Step 3 Numeracy Framework: "I can add and subtract numbers using whole numbers and decimals." (any no. of digits) "I can add and subtract totals less than $£ 100$ using correct notation, e.g. £28.18 + £33.45." Progression Step 3 Maths \& Numeracy AoLE: "I can use the four arithmetic operations confidently, efficiently and accurately with integers and decimals and I can combine these using distributive, associative and commutative laws where appropriate."
CONCRETE RESOURCES: - Dienes - use when not crossing boundary - Straws and elastic bands - use when crossing boundary - Money - euros, cents, pounds, pennies VOCABULARY: add, addition, carry over, more, plus, increase, sum, total, altogether, score, double, near double, tens boundary, hundreds boundary, thousands boundary, inverse, partition, recombine, efficiency vs. understanding, home column		
METHOD/GUIDANCE	EXAMPLE/REPRESENTATION	
Children revisit using a blank number line to add 4-digit numbers when crossing boundaries. Children will partition the smaller number and begin their number line from the larger number. This written method should be consolidated at the beginning of the year to remind children of alternative informal written layouts.		

Children will continue to use expanded column addition with numbers up to 4 digits.

They will be introduced to the formal written method of (compact) column addition alongside expanded column addition and should be using compact by the end of the year.

Use dienes and straws to model.
"Partition, add, recombine!"
Carried values to be recorded above the question values in the relevant column.

Children will use money as a visual representation before adding decimal numbers with the same number of decimal places when solving money and measure problems using expanded column addition.
"Partition, add, recombine!"

```
€3.70
    €1.54=1 +0.5 +0.04
    +€2.23=2+0.2+0.03
    €3.77=3+0.7+0.07
```

Children will add decimals when solving money and measure problems using expanded column addition.

They will be introduced to the formal written method of (compact) column addition by the end of the year.

$$
\begin{array}{rl}
4000 & 1000100 \\
2345 & =2000+300+40+5 \\
+1792 & =1000+700+90+2 \\
4137 & =4000+100+30+7
\end{array}
$$

$$
2345+1792=
$$

$$
\begin{array}{r}
11 \\
+2345 \\
+1792 \\
\hline 4137
\end{array}
$$

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Children will then move on to adding decimals using the formal written method of (compact) column addition. \\
"Partition, add, recombine!"
\end{tabular} \& \[
\begin{aligned}
\& € 3.70 \\
\& € 1.54=1+0.5+0.04 \\
\&+€ 2.23=2+0.2+0.03 \\
\& € 3.77=3+0.7+0.07
\end{aligned}
\] \\
\hline Children will add decimal numbers with a different number of decimal places using the formal written method of (compact) column addition using 0 as a place value holder. \& \[
\begin{array}{r}
16.38+23.4= \\
16.38 \\
+23.40 \\
\hline 39.78
\end{array} \quad \text { Add the } \begin{aligned}
\& \text { place holder }
\end{aligned}
\] \\
\hline Solve multi-step problems (that may include subtraction) using formal jottings and explaining reasoning behind their choice of operation and calculation (bar modelling and fact family triangles) \& \begin{tabular}{l}
Part-Part-Whole Whole \\
Part \\
Part \\
Whole \(=\) Part + Part \\
Part \(=\) Whole - Part \\
Comparison \\
Part-Part-Whole and Comparison
\(\square\) \\
A \\
B \(\qquad\) Whole

 \qquad
\qquad

Difference $=A-B$ Difference $=A-B$
\end{tabular}

\hline Solve negative number word problems counting forwards and backwards through zero with positive and negative whole numbers. \& In the morning, the temperature in Milan is $-7^{\circ} \mathrm{C}$. It rises by 12 degrees during the morning. What is the temperature at midday?

\hline | MENTAL STRATEGIES: |
| :--- |
| - Add numbers mentally with increasingly la |
| - Mentally add tenths (e.g. $0.2+0.6=0.8$) |
| - Use number bonds to 100 knowledge to c $0.83+0.17=1$) |
| - Use rounding to check answers to calcula levels of accuracy | \& | ge numbers (e.g. $10162+2300=12462$) d-digit whole numbers and tenths $(8+0.3=8.3)$ culate complements to one using hundredths (e.g. |
| :--- |
| ons and determine, in the context of a problem, |

\hline
\end{tabular}

Ysgol Eyton CALCULATION POLICY		
ADDITION		
YEAR 6		
Progression Step 3 Numeracy Framework: "I can add and subtract numbers using whole numbers and decimals." (any no. of digits) "I can add and subtract totals less than £100 using correct notation, e.g. £28.18+£33.45." Progression Step 3 Maths \& Numeracy AoLE: "I can use the four arithmetic operations confidently, efficiently and accurately with integers and decimals and I can combine these using distributive, associative and commutative laws where appropriate."		
CONCRETE RESOURCES: - Dienes - use when not crossing boundary - Straws and elastic bands - use whe crossing boundary - Money - euros, cents, pounds, pen		VOCABULARY: efficiency, order of operations, column addition, add, in total, answer, tens boundary, hundreds boundary, thousands, carry over, thousands boundary, millions boundary, units boundary, tenths boundary, hundredths boundary, decimal place, inverse, home column
METHOD/GUIDANCE	EXAMPLE/REPRESENTATION	
Children will add several numbers of increasing complexity using the formal written method of (compact) column addition.	810	$\begin{array}{r} 9+3668+15301+20551+120579 \\ 1111 \\ 81059 \\ 3668 \\ 15301 \\ +20551 \\ \hline 120579 \end{array}$
Children will add several decimals numbers with a different number of decimal places using the formal written method of (compact) column addition.		

